MATHEMATICS

DPP No. 87

Total Marks: 31

Max. Time: 32 min.

Topic: Parabola

Type of Questions M.M., Min.

Single choice Objective (no negative marking) Q.1,2,3 Multiple choice objective (no negative marking) Q.4,5 Subjective Questions (no negative marking) Q.6,7,8

(3 marks, 3 min.) (5 marks, 4 min.) (4 marks, 5 min.)

[9, 9] [10, 8] [12, 15]

- 1. The parabola having its focus at (3, 2) and directrix along the y-axis has its vertex at-
 - (A) (2, 2)
- (B) $\left(\frac{3}{2}, 2\right)$ (C) $\left(\frac{1}{2}, 2\right)$ (D) $\left(\frac{2}{3}, 2\right)$
- 2. Through the vertex 'O' of the parabola $y^2 = 4ax$, variable chords OP and OQ are drawn at right angles. If the variable chord PQ intersects the axis of x at R, then distance OR:
 - (A) varies with different positions of P and Q
 - (B) equals the semi latus rectum of the parabola
 - (C) equals latus rectum of the parabola
 - (D) equals double the latus rectum of the parabola
- 3. Area of the triangle formed by the tangents at the points (4, 6), (10, 8) and (2, 4) on the parabola $y^2 - 2x = 8y - 20$, is (in sq. units)
 - (A) 4
- (B)2
- (C) 1
- (D) 8
- The equation of tangents drawn to the parabola $y^2 + 12x = 0$ from the point (3, 8) is/are 4.

 - (A) 3x y 1 = 0 (B) x 2y + 13 = 0
- (C) x + 3y 27 = 0
- (D) none of these
- 5. The equation $y^2 + 3 = 2(2x + y)$ represents a parabola with the vertex at :

 - (A) $\left(\frac{1}{2}, 1\right)$ & axis parallel to x-axis (B) $\left(1, \frac{1}{2}\right)$ & axis parallel to x-axis
 - (C) $\left(\frac{1}{2}, 1\right)$ & focus at $\left(\frac{3}{2}, 1\right)$
 - (D) $\left(\frac{1}{2}, 1\right)$ & axis parallel to y axis
- The focal distance of a point on a parabola $y^2 = 8x$ is 8. Find it 6.
- Two tangents to the parabola $y^2 = 8x$ meet the tangent at its vertex in the points P and Q. If 7. PQ = 4 units, find the locus of the point of intersection of the two tangents.
- Find the equations of common tangents to the parabola $y^2 = 16x$ and the circle $x^2 + y^2 = 8$. 8.

Answers Key

- **1.** (B) **2.** (C) **3.** (B) **4.** (A)(C)
- **5.** (A)(C) **6.** (6, $4\sqrt{3}$), (6, $-4\sqrt{3}$) **7.** $y^2 = 8(x + 2)$]
- 8. $x \pm y + 4 = 0$

